§60.47a

accurate estimation of emissions regulated under this part.

[44 FR 33613, June 11, 1979, as amended at 54 FR 6664, Feb. 14, 1989; 63 FR 49454, Sept. 16, 1998; 66 FR 18552, Apr. 10, 2001; 66 FR 31178, June 11, 2001]

§ 60.47a Emission monitoring.

- (a) The owner or operator of an affected facility shall install, calibrate. maintain, and operate a continuous monitoring system, and record the output of the system, for measuring the opacity of emissions discharged to the atmosphere, except where gaseous fuel is the only fuel combusted. If opacity interference due to water droplets exists in the stack (for example, from the use of an FGD system), the opacity is monitored upstream of the interference (at the inlet to the FGD system). If opacity interference is experienced at all locations (both at the inlet and outlet of the sulfur dioxide control system), alternate parameters indicative of the particulate matter control system's performance are monitored (subject to the approval of the Adminis-
- (b) The owner or operator of an affected facility shall install, calibrate, maintain, and operate a continuous monitoring system, and record the output of the system, for measuring sulfur dioxide emissions, except where natural gas is the only fuel combusted, as follows:
- (1) Sulfur dioxide emissions are monitored at both the inlet and outlet of the sulfur dioxide control device.
- (2) For a facility which qualifies under the provisions of §60.43a(d), sulfur dioxide emissions are only monitored as discharged to the atmosphere.
- (3) An "as fired" fuel monitoring system (upstream of coal pulverizers) meeting the requirements of Method 19may be used to determine potential sulfur dioxide emissions in place of a continuous sulfur dioxide emission monitor at the inlet to the sulfur dioxide control device as required under paragraph (b)(1) of this section.
- (c)(1) The owner or operator of an affected facility shall install, calibrate, maintain, and operate a continuous monitoring system, and record the output of the system, for measuring nitro-

gen oxides emissions discharged to the atmosphere; or

- (2) If the owner or operator has installed a nitrogen oxides emission rate continuous emission monitoring system (CEMS) to meet the requirements of part 75 of this chapter and is continuing to meet the ongoing requirements of part 75 of this chapter, that CEMS may be used to meet the requirements of this section, except that the owner or operator shall also meet the requirements of §60.49a. Data reported to meet the requirements of §60.49a shall not include data substituted using the missing data procedures in subpart D of part 75 of this chapter, nor shall the data have been bias adjusted according to the procedures of part 75 of this chapter.
- (d) The owner or operator of an affected facility shall install, calibrate, maintain, and operate a continuous monitoring system, and record the output of the system, for measuring the oxygen or carbon dioxide content of the flue gases at each location where sulfur dioxide or nitrogen oxides emissions are monitored.
- (e) The continuous monitoring systems under paragraphs (b), (c), and (d) of this section are operated and data recorded during all periods of operation of the affected facility including periods of startup, shutdown, malfunction or emergency conditions, except for continuous monitoring system breakdowns, repairs, calibration checks, and zero and span adjustments.
- (f) The owner or operator shall obtain emission data for at least 18 hours in at least 22 out of 30 successive boiler operating days. If this minimum data requirement cannot be met with a continuous monitoring system, the owner or operator shall supplement emission data with other monitoring systems approved by the Administrator or the reference methods and procedures as described in paragraph (h) of this section.
- (g) The 1-hour averages required under paragraph §60.13(h) are expressed in ng/J (lb/million Btu) heat input and used to calculate the average emission rates under §60.46a. The 1-hour averages are calculated using the data points required under §60.13(b). At least

Environmental Protection Agency

two data points must be used to calculate the 1-hour averages.

- (h) When it becomes necessary to supplement continuous monitoring system data to meet the minimum data requirements in paragraph (f) of this section, the owner or operator shall use the reference methods and procedures as specified in this paragraph. Acceptable alternative methods and procedures are given in paragraph (j) of this section.
- (1) Method 6 shall be used to determine the SO_2 concentration at the same location as the SO_2 monitor. Samples shall be taken at 60-minute intervals. The sampling time and sample volume for each sample shall be at least 20 minutes and 0.020 dscm (0.71 dscf). Each sample represents a 1-hour average.
- (2) Method 7 shall be used to determine the NO_x concentration at the same location as the NO_x monitor. Samples shall be taken at 30-minute intervals. The arithmetic average of two consecutive samples represents a 1-hour average.
- (3) The emission rate correction factor, integrated bag sampling and analysis procedure of Method 3B shall be used to determine the O_2 or CO_2 concentration at the same location as the O_2 or CO_2 monitor. Samples shall be taken for at least 30 minutes in each hour. Each sample represents a 1-hour average.
- (4) The procedures in Method 19 shall be used to compute each 1-hour average concentration in ng/J (1b/million Btu) heat input.
- (i) The owner or operator shall use methods and procedures in this paragraph to conduct monitoring system performance evaluations under \$60.13(c) and calibration checks under \$60.13(d). Acceptable alternative methods and procedures are given in paragraph (j) of this section.
- (1) Methods 3B, 6, and 7 shall be used to determine O_2 , SO_2 , and NO_X concentrations, respectively.
- (2) SO_2 or NO_x (NO), as applicable, shall be used for preparing the calibration gas mixtures (in N_2 , as applicable) under Performance Specification 2 of appendix B of this part.
- (3) For affected facilities burning only fossil fuel, the span value for a

continuous monitoring system for measuring opacity is between 60 and 80 percent and for a continuous monitoring system measuring nitrogen oxides is determined as follows:

Fossil fuel	Span value for nitro- gen oxides (ppm)
Gas Liquid Solid Combination	500 500 1,000 500 (x+y)+1,000z

where:

- x is the fraction of total heat input derived from gaseous fossil fuel,
- y is the fraction of total heat input derived from liquid fossil fuel, and
- z is the fraction of total heat input derived from solid fossil fuel.
- (4) All span values computed under paragraph (b)(3) of this section for burning combinations of fossil fuels are rounded to the nearest 500 ppm.
- (5) For affected facilities burning fossil fuel, alone or in combination with non-fossil fuel, the span value of the sulfur dioxide continuous monitoring system at the inlet to the sulfur dioxide control device is 125 percent of the maximum estimated hourly potential emissions of the fuel fired, and the outlet of the sulfur dioxide control device is 50 percent of maximum estimated hourly potential emissions of the fuel fired.
- (j) The owner or operator may use the following as alternatives to the reference methods and procedures specified in this section:
- (1) For Method 6, Method 6A or 6B (whenever Methods 6 and 3 or 3B data are used) or 6C may be used. Each Method 6B sample obtained over 24 hours represents 24 1-hour averages. If Method 6A or 6B is used under paragraph (i) of this section, the conditions under §60.46(d)(1) apply; these conditions do not apply under paragraph (h) of this section.
- (2) For Method 7, Method 7A, 7C, 7D, or 7E may be used. If Method 7C, 7D, or 7E is used, the sampling time for each run shall be 1 hour.
- (3) For Method 3, Method 3A or 3B may be used if the sampling time is 1 hour.
- (4) For Method 3B, Method 3A may be used.
- (k) The procedures specified in paragraphs (k)(1) through (3) of this section

§ 60.48a

shall be used to determine gross output for sources demonstrating compliance with the output-based standard under §60.44a(d)(1).

- (1) The owner or operator of an affected facility with electricity generation shall install, calibrate, maintain, and operate a wattmeter; measure gross electrical output in megawatthour on a continuous basis; and record the output of the monitor.
- (2) The owner or operator of an affected facility with process steam generation shall install, calibrate, maintain, and operate meters for steam flow, temperature, and pressure; measure gross process steam output in joules per hour (or Btu per hour) on a continuous basis; and record the output of the monitor.
- (3) For affected facilities generating process steam in combination with electrical generation, the gross energy output is determined from the gross electrical output measured in accordance with paragraph (k)(1) of this section plus 50 percent of the gross thermal output of the process steam measured in accordance with paragraph (k)(2) of this section.
- (1) The owner or operator of an affected facility demonstrating compliance with the output-based standard under \$60.44a(d)(1) shall install, certify, operate, and maintain a continuous flow monitoring system meeting the requirements of Performance Specification 6 of appendix B and procedure 1 of appendix F of this subpart, and record the output of the system, for measuring the flow of exhaust gases discharged to the atmosphere; or
- (m) Alternatively, data from a continuous flow monitoring system certified according to the requirements of 40 CFR 75.20, meeting the applicable quality control and quality assurance requirements of 40 CFR 75.21, and validated according to 40 CFR 75.23, may be used.
- (n) Gas-fired and oil-fired units. The owner or operator of an affected unit that qualifies as a gas-fired or oil-fired unit, as defined in 40 CFR 72.2, may use, as an alternative to the requirements specified in either paragraph (1) or (m) of this section, a fuel flow monitoring system certified and operated

according to the requirements of appendix D of 40 CFR part 75.

(o) The owner or operator of a duct burner, as described in $\S 60.41a$, which is subject to the NO_X standards of $\S 60.44a(a)(1)$ or (d)(1) is not required to install or operate a continuous emissions monitoring system to measure NO_X emissions; a wattmeter to measure gross electrical output; meters to measure steam flow, temperature, and pressure; and a continuous flow monitoring system to measure the flow of exhaust gases discharged to the atmosphere.

[44 FR 33613, June 11, 1979, as amended at 54 FR 6664, Feb. 14, 1989; 55 FR 5212, Feb. 14, 1990; 55 FR 18876, May 7, 1990; 63 FR 49454, Sept. 16, 1998; 65 FR 61752, Oct. 17, 2000; 66 FR 18553, Apr. 10, 2001]

§ 60.48a Compliance determination procedures and methods.

- (a) In conducting the performance tests required in $\S60.8$, the owner or operator shall use as reference methods and procedures the methods in appendix A of this part or the methods and procedures as specified in this section, except as provided in $\S60.8(b)$. Section 60.8(f) does not apply to this section for SO_2 and NO_x . Acceptable alternative methods are given in paragraph (e) of this section.
- (b) The owner or operator shall determine compliance with the particulate matter standards in §60.42a as follows:
- (1) The dry basis F factor (O_2) procedures in Method 19 shall be used to compute the emission rate of particulate matter.
- (2) For the particular matter concentration, Method 5 shall be used at affected facilities without wet FGD systems and Method 5B shall be used after wet FGD systems.
- (i) The sampling time and sample volume for each run shall be at least 120 minutes and 1.70 dscm (60 dscf). The probe and filter holder heating system in the sampling train may be set to provide an average gas temperature of no greater than 160±14 °C (320±25°F).
- (ii) For each particulate run, the emission rate correction factor, integrated or grab sampling and analysis procedures of Method 3B shall be used to determine the O_2 concentration. The